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Abstract
We provide, with a new formulation of vector, coherent states for nonlinear
spin–orbit Hamiltonian models in terms of the matrix eigenvalue problem for
generalized annihilation operators. Nonlinear quaternion vector coherent states
are also discussed.

PACS numbers: 42.50.−p, 03.65.Fd, 02.20.−a

Nonlinear coherent states [1] and their generalization as nonlinear vector coherent states
(NVCSs) became the focus of attention of research activities for their relevance in nonlinear
quantum optics [2–5]. In previous works [4, 5], it has been shown that classes of generalized
spin–orbit Hamiltonians (encompassing in specific parameter limits well-known Hamiltonians
such as the Jaynes-Cummings Hamiltonian [6] in quantum optics, Rashba [7] and Dresselhaus
[8] Hamiltonians in condensed matter physics) associated with f -deformed oscillator algebra
[9] remain exactly solvable in the rotating wave approximation. Moreover, classes of NVCSs
investigated for the same models prove to be well defined fulfilling all axioms of the Gazeau–
Klauder scheme [10]. The vector character of those NVCSs is described in terms of unit
sphere S2 vectors.

In this communication, we propose an alternative construction of Gazeau–Klauder NVCSs
for classes of Hamiltonians with spin–orbit interaction entailing the definition of matrix vector
coherent states. The specific instance of quaternion NVCSs is also discussed.

Consider the generalized spin–orbit potential parameterized by the couple (k, ε) ∈
(N/{0}) × {±},
Vk,ε = B+

k,εσ+ + B−
k,εσ− B+

k,ε = A−εkλε(N) B−
k,ε = λ−ε(N)Aεk, (1)

where, given the Pauli-spin matrices (σ1, σ2, σ3), one has σ± = (σ1 ± iσ2)/2, while,
introducing {a− := a, a+ := a†, N} generators of the ordinary Fock–Heisenberg algebra,
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the nonlinear operators A− := a−f (N) := af (N),A+ := f (N)a+ := f (N)a† and {N} :=
A+A− span the Jannussis et al f -deformed oscillator algebra [9] assuming that f (N) is a real-
valued and non-vanishing operator. Then, we define for k ∈ N/{0}, ε = ±, Aεk := (Aε)k .
The complex-valued operator λ+(N) := λ(N) corresponds to the so-called intensity dependent
(ID) coupling [11] whereas λ−(N) denotes its complex conjugate. The potential Vk,ε describes
a nonlinear model involving a k-multiphoton contribution to the ID coupling λ(N) which is
of interest in the study of ID interaction between a single atom and the radiation field with
the atom making k-photon transitions in QO [11, 12] as well as in the study of the quantized
motion of a single ion in an anharmonic oscillator potential trap [13].

The (k, ε, κ, f )-deformed spin–orbit model is introduced by the reduced (dimensionless)
Hamiltonian [5]

Hred
k,ε = h̄ω

2h̄ω0
({N + 1} + {N}) +

1

2
({N + 1} − κ{N})σ3 + B+

k,εσ+ + B−
k,εσ− (2)

with κ being a new real parameter, ω the radiation field mode frequency and ω0 the atomic
frequency. Now, let us consider ω = (1 + ε)ω0, assuming that ω0 �= 0. This condition
is related to the rotating wave approximation (rwa) if the detuning parameter |ε| � 1 and
provided |ω − ω0| � ω,ω0. Nonetheless, if ω0 turns to be negative, then the relation
ω = (1 + ε)ω0 implies that ε < −1 so that we are far from the rwa regime.

Hamiltonian (2) generalizes known Hamiltonians appearing in the literature,
including linear and nonlinear spin–orbit effects recovering for particular parameters:
(k, ε, κ, λ(N), f (N)) = (1, +, 1, c, 1) Hussin and Nieto [14]; (k, ε, κ, λ(N), f (N)) =
(1,−, 1, ic, 1) Shen et al [15]; (k, ε, κ, λ(N), f (N)) = (1, +, q, c, [(1 − qN)/(N(1 −
q))]1/2)(p = 1, q) Ben Geloun et al [4]; (k, ε, κ, λ(N), ε) = (1, +, 1, c, 0) Balantekin et al
[16]; (k, ε, κ, λ(N), f (N)) = (1, +, 1, c,N + m) Daoud and Douary [13], c being some real
constant in these models.

Let us consider the spectrum of Hamiltonian (2). It can be shown that this Hamiltonian
is exactly solvable in the Hilbert space of states V spanned by the usual Fock representation
space {|n〉, n = 0, 1, . . .} tensorized by the spin eigenstates of σ3, i.e., σ3|±〉 = ±|±〉. We
first obtain a finite sequence of eigenstates {|E∗

q 〉, q = 0, 1, . . . , k − 1}, such that

|E∗
q 〉 = |q,−ε〉 (3)

with associated eigenvalues

E∗
q = 1

2 [(1 + ε − ε){q + 1} + (1 + ε + εκ){q}]. (4)

Formally, the ground state and its energy may be expressed as |E∗
0 〉 and E∗

0 .
Now, let us introduce the quantities, for any (n + kε) ∈ N,

E({n}) = 1

2

[
ε

2
{n + kε + 1} +

1

2
(1 + ε + κ){n + kε} −

(
1 +

ε

2

)
{n + 1} − 1

2
(1 + ε − κ){n}

]
Q({n}) =

[
E2({n}) + |λ(n + kε)|2

( {n + kε}!
{n}!

)ε] 1
2

(5)

where the notation {n} := nf 2(n) is referred to as the f -basic number. For any n + kε � 0,
the eigenenergies are given by

E±
n = 1

2

[
ε

2
{n + kε + 1} +

1

2
(1 + ε + κ){n + kε} +

(
1 +

ε

2

)
{n + 1}

+
1

2
(1 + ε − κ){n}

]
± Q({n}). (6)
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Furthermore, from the definition of the mixing angle ϑ({n}) as

sin ϑ({n}) = eiϕλ(n)

[
Q({n}) − E({n})

2Q({n})
] 1

2

cos ϑ({n}) =
[
Q({n}) + E({n})

2Q({n})
] 1

2

(7)

with exp(iϕλ(n)) = λ(n + kε)/|λ(n + kε)| the phase factor of λ(n + kε), the eigenstates
associated with the eigenvalues (6) can be written as∣∣E+

n

〉 = sin ϑ({n})|n, +〉 + cos ϑ({n})|n + kε,−〉 (8)

|E−
n 〉 = cos ϑ({n})|n, +〉 − sin ϑ({n})|n + kε,−〉, (9)

with n � k for ε = − and the notation X denoting the complex conjugate of the quantity X.
Henceforth, we set nε

0 := max(0,−kε) and ñ = n + nε
0.

The total Hilbert space V admits the spectral decomposition which consists of a direct sum
of one-dimensional subspaces Vq separately spanned by the states |E∗

q 〉, q = 0, 1, . . . , k − 1,

with the complementary V of ⊕k−1
q=0Vq in V , generated by two towers of energy eigenstates{∣∣E±

ñ

〉
, ñ = n + nε

0, n = 0, 1, 2, . . .
}
, namely V = V0 ⊕ V1 ⊕ · · · ⊕ Vk−1 ⊕ V .

A strictly increasing and positive energy spectrum is generally required for Gazeau–
Klauder coherent state construction. However, we do not impose those severe conditions on
the spectrum. The minimal requirement allowing the NVCS building that we will refer to is that
of a bounded from below spectrum E±

ñ > E±
nε

0
. Note that in [14] (see also references therein),

a good ‘detuning’ of the parameters reveals to be efficient in order to obtain an increasing and
positive spectrum. Through an argument of continuity, the minimal requirement E±

ñ > E±
nε

0

may be satisfied regarding the freedom afforded by the parameters (k, ε, κ, ε, λ(N)) together
with the deformation operator f (N).

The following operators provide the passage from one basis of V to another,

U =
∞∑

n=0,±

∣∣E±
ñ

〉〈n,±| U† =
∞∑

n=0,±
|n,±〉〈E±

ñ

∣∣, (10)

and are mutually adjoint on V even though nonunitary on V . However, we have U†U = IV and
UU† = IV .

Given the complex-valued quantities K±({n}), ladder operators on V can be defined such
that

A− =
∞∑

n=0,±

∣∣E±
ñ−1

〉
K±({n})〈E±

ñ

∣∣ A+ =
∞∑

n=0,±

∣∣E±
ñ+1

〉
K±({n + 1})〈E±

ñ

∣∣ (11)

and prove to be mutually adjoint on the subspace V . Factoring out U and U† in (11), it is easy
to get the diagonal operators A± = U†A±U defined on the basis |n,±〉,

A− =
∞∑

n=0,±
K({n})|n − 1,±〉〈n,±| A+ =

∞∑
n=0,±

K({n + 1})|n + 1,±〉〈n,±| (12)

K({n}) := diag(K+({n}),K−({n})) is a 2 × 2 diagonal complex matrix and K({n}) :=
diag(K+({n}),K−({n})).

We introduce the NVCSs by the generalized eigenvalue problem

A−|(z, w); τ±;±〉 = Z̃(z, w)Q̃V |(z, w); τ±;±〉 (13)

where Z̃ is a 2 × 2 matrix operator depending on two complex variables (z, w), τ± are real
parameters introduced in the following, ± correspond to the spin-vector dependence replacing
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the S2 unit sphere-vector dependence in the formulation of [4, 5]. Defined on V , the operator
Q̃V is given by

Q̃V =
k−1∑
q=0

|E∗
q 〉〈E∗

q | +
∞∑

n=0,±

∣∣E±
ñ

〉
h±

f (n)
〈
E±

ñ

∣∣, (14)

and the quantities h±
f (n) �= 0 are complex scalars such that h±

f (n) → 1 as f (N) → 1.

Assume that there exists Z = U†Z̃U a complex constant matrix and QV = U†Q̃VU , such that
we translate (13) into the diagonal basis as

A−|Z; τ±;±〉 = ZQV |Z; τ±;±〉 |Z; τ±;±〉 = U†|(z, w); τ±;±〉

QV =
∞∑

n=0,±
|n〉〈n| ⊗ hf (n)|±〉〈±| hf (n) = diag

(
h+

f (n), h−
f (n)

)
.

(15)

Such a matrix eigenvalue problem can be obtained if we fix Z = diag(z, w), z,w ∈ C.
A second example of NVCSs defined over matrix domain is realized considering Z as a
quaternionic matrix.

Let us then set Z = diag(z, w), z,w ∈ C with, consequently,

Z̃(z, w) =
∞∑

n=0

(∣∣E+
ñ

〉
z
〈
E+

ñ

∣∣ +
∣∣E−

ñ

〉
w

〈
E−

ñ

∣∣).
The treatment of the eigenvalue problem (15) is straightforward by expanding |Z; τ±;±〉
as a power series of |n〉 ⊗ |±〉 with matrix valued complex continuous functions Cn(Z) =
diag

(
C+

n (Z), C−
n (Z)

)
. One gets the matrix recurrence relation

∀n ∈ N Cn+1(Z)K({n + 1}) = Zhf (n)Cn(Z) (16)

easily solved by, setting the initial condition K±({0}) = 0,

Cn(Z) = R(n)C0(Z)Zn R(n) = (K({n})!)−1(hf (n − 1)!hf (0)) (17)

where K({n})! := ∏n
k=1 K({k}) and K({0})! := I2, hf (n)! := ∏n

k=1 hf (k), hf (0)! := I2 and
hf (−1)! := (hf (0))−1, by convention. The constant matrix C0(Z) is yet to be determined.

The stability of NVCSs under a time evolution operator U(t) = exp
[−iω0tH

red
k,ε

]
,

with Hred
k,ε = U†Hred

k,εU , is now studied. Consider K±({n}) = exp(iϕ±({n}))K0
±({n}), with

K0
±({n}) real quantities, i.e. in terms of matrices, K({n}) = exp(iϕ({n}))K0({n}), with

appropriate diagonal matrices of phase ϕ({n}) and norm K0({n}) entries. Then, one requires
ϕ({n}) = ω0τ(Eñ − Eñ−1) , where τ = diag(τ+, τ−) and Eñ = diag

(
E+

ñ , E−
ñ

)
, such that

U(t)|Z; τ±;±〉 = |Z; τ± + t;±〉.
The normalizability of NVCSs is governed by the trace class scalar product∑

±
〈Z; τ±;±|Z; τ±;±〉 = 1. (18)

Let us introduce the quantities

C0(Z) = N(Z) exp[−iω0τEñ] N(Z)−2 =
∞∑

n=0

(|z|2n
(
R0

+(n)
)2

+ |w|2n(R0
−(n))2

)
(19)

where R0(n) = diag
(
R0

+(n), R0
−(n)

) = (K0({n})!)−1(hf (n − 1)!hf (0)). Note that the
convergence radii of the series (19) are such that |z| � L+, |w| � L− and L± =
limn→∞ K0

±({n})/h±
f (n − 1). The general set of NVCSs, solution of the eigenvalue problem

(15), stable under time translations and normalized to unity in the sense of (19), are given by

|Z; τ±;±〉 = N(Z)

∞∑
n=0

|n〉 ⊗ R0(n) exp[−iω0τEñ]Zn|±〉. (20)
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It is noteworthy that defining NVCSs by (13), or equivalently mapping (20) on the basis
∣∣E±

ñ

〉
,

implies that the eigenvalue Z̃ = 0 is associated with any combination of the states |E∗
q 〉 and∣∣E±

nε
0

〉
. This fact breaks the continuity of NVCSs in the vicinity of Z̃ = 0. However, we remove

this singularity by defining the NVCSs associated with Z̃ = 0 merely as a combination of∣∣E±
nε

0

〉
.
The overcompleteness property of NVCSs consists in the existence of the resolution of

the identity on V , namely∑
±

∫
D

dµ(Z)|Z; τ±;±〉〈Z; τ±;±| = IV . (21)

Using polar coordinates z = r+eiθ+ and w = r−eiθ− , r± � 0, θ± ∈ [0, 2π [, the measure dµ(Z)

is parameterized by

dµ(Z) = W+(r+)W−(r−)r+r−dr+dr−dθ+dθ− (22)

with weight functions W±(r±) to be specified. A direct calculation leads to the Stieljes
moment problems∫ L2

±

0
du±un

±h±(u±) = (
K0

±({n})!)2/(
h±

f (n − 1)!h±
f (0)

)2
(23)

with u± = r2
± and h±(u±) = πW±(u±)(N(Z))2. Constraining the ladder operator algebra

such that [A−,A+] = {N + 1}−{N} imposes the choice K0({n}) = √{n}I2. One removes the
deformed part in f (n) by letting h±

f (n) = s|f (n + 1)|, n � 0, s = ±1. Noting that L± = ∞,
solutions to (23) are readily obtained as h±(u±) = e−u± and one deduces the corresponding
weight factors. The overall measure is then

dµ(Z) = 1

π2

(
e−r2

+ + e−r2
−
)
r+r−dr+dr−dθ+ dθ−. (24)

A similar result is worked out for the supersymmetric harmonic oscillator VCSs [17]. We can
deduce the measure corresponding to the NCVSs |̃Z; τ±;±〉 by setting dµ(̃Z) = dµ(Z).

As particular NVCSs defined over the matrix domain, let us consider now quaternionic
NVCSs recovered for the following matrix representation [2, 17],

Zquat = r(cos ξI2 + isin ξ σ̂ ) σ̂ =
(

cos θ eiφ sin θ

e−iφ sin θ −cosθ

)
, (25)

where, in the polar coordinates, z = reiξ with r > 0, ξ ∈ [0, 2π [, θ ∈ [0, π ] and φ ∈ [0, 2π [,
the corresponding Z̃(z, w) can be easily found. Then, quaternionic NVCSs associated with
spin–orbit Hamiltonians can be written in the basis |n,±〉

|Zquat; τ±;±〉 = N(Zquat)

∞∑
n=0

|n〉 ⊗ R0(n) exp[−iω0τEñ]Zn
quat|±〉

(N(Zquat))
−2 =

∞∑
n=0

|z|2n
((

R0
+(n)

)2
+

(
R0

−(n)
)2) (26)

the normalization factor being only defined on the disc D of radius

L = lim
n→∞

[(
R0

+(n + 1)
)2

+
(
R0

−(n + 1)
)2(

R0
+(n)

)2
+

(
R0−(n)

)2

]−1/2

. (27)
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The resolution of the identity over V with respect to (26) can be considered through (21)
with adapted considerations for states, the integration domain D = D × S2 and using the
parametrization of the measure

dµ(Zquat) = W(r)r dr dξ dµS2(θ, φ) dµS2(θ, φ) = 1

4π
sin θ dθ dφ. (28)

After some algebra and changing the variables as u = r2, one comes to the moment problems∫ L2

0
du unh(u) = (

K0
±({n})!)2/(

h±
f (n − 1)!h±

f (0)
)2

, (29)

where h(u) = πW(u)(N(Zquat))
2. The further condition R0

+(n) = R0
−(n) should be imposed

in order to obtain a unique moment identity which, by constraining both ladder operator
algebra and hf (n) as previously performed, leads to an infinite convergence radius L = ∞
for (N(Zquat))

−2 = 2eu and to the solution of (29) as h(u) = e−u. Noting that W(r) = 2/π ,
the measure (28) has the form

dµ(Zquat) = 1

2π2
r dr sin θ dξ dθ dφ. (30)

Finally, for any type of NVCSs, the identity action axiom [10] can be achieved by giving the
action-angle conjugate coordinates

(
J± = 〈

Z; τ±;±∣∣Hred
k,ε

∣∣Z; τ±;±〉
, τ±

)
.

An interesting application concerns the classes of NVCSs for (p, q, α, β = 0, �)-Burban
deformed oscillator algebras defined in [18] in relation to bibasic hypergeometric functions
[19]

f (N) =
√

p−αN − qαN

N(p−� − q�)

where the real parameters p > 1, 0 < q < 1 are such that (pq)α < 1, α > 0, � ∈ R; the basic
integer number is denoted by [n].

Consider now the (k, ε, κ, f )-model under this deformation. It appears also possible to
uniquely determine the NVCSs in this situation once one imposes the heretofore conditions
on the ladder operator algebra and the matrix hf (n).

However, let us proceed differently by considering the following construction leading to a
new set of solvable NVCSs. Let us ask for the ladder operators A± to satisfy a (p, q, α, 0, �)-
deformed algebra on V such that

A−A+ − q�A+A− = p−αN =
∞∑

n=0,±
|n,±〉p−αn〈n,±|

A−A+ − p−�A+A− = qαN =
∞∑

n=0,±
|n,±〉qαn〈n,±|.

(31)

Then, by induction, the ladder operators A± = UA±U† acting on the subspace V are also
constrained to obey the same kind of algebras. Expanding (31), the following recurrence
relations are obtained:(
K0

±([n + 1])
)2 − q�

(
K0

±([n])
)2 = p−αn,

(
K0

±([n + 1])
)2 − p−�

(
K0

±([n])
)2 = qαn.

(32)

Given the initial values K0
±([0]) = 0, the solutions to the associated recurrence relations (32)

are given by K0([n]) = √
[n]I2.
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We now distinguish the NVCSs defined for Z = diag(z, w), i.e. Z-NVCSs (resp. for the
quaternion matrix Zquat named Zquat-NVCSs), from the above NVCSs by setting the matrix

hf (N) = h0(N) = qµNdiag(
√

l+(p, q),
√

l−(p, q))

(resp. hf (N) = hquat(N) = qµN
√

l(p, q)I2)
(33)

where µ is another real deformation parameter. The positive real-valued functions l±(p, q)

(resp. l(p, q)) are such that the general requirement lim(p,q)→(1+,1−) h0(N) = I2 (resp.
lim(p,q)→(1+,1−) hquat(N) = I2) holds. It turns out that both NVCSs are well defined with
solvable moment problems associated with the resolution of identity on V if µ = α/2.

The normalization factor for Z- (resp. Zquat-) NVCSs is then defined by the series

(N (Z))−2 =
∞∑

n=0

(qα/2)n(n−1)

( |z|2n

[n]!
(l+(p, q))n +

|w|2n

[n]!
(l−(p, q))n

)
=

∑
±

E (1/2,0)

(pα,qα)

(
r2
±q−α/2l±(p, q)(p−� − q�)

) |z| = r+ |w| = r− (34)(
resp. (N (Zquat))

−2 = 2
∞∑

n=0

(qα/2)n(n−1)

( |z|2n

[n]!
(l(p, q))n

)
= 2E (1/2,0)

(pα,qα)(r
2q−α/2l(p, q)(p−� − q�)) |z| = r

)
(35)

of infinite convergence radii since the generalized exponential

E (ρ,ν)

(p̄,q̄) (z) =
∞∑

n=0

(
q̄ρ

p̄ν

)n2

zn

[p̄, q̄; p̄, q̄]n
(36)

converges everywhere under the condition q̄2ρp̄1−2ν � 1 [4] satisfied for ρ = 1/2, ν = 0, q̄ =
qα and p̄ = pα leading to (qp)α � 1.

The moment problems (23) (resp. (29)) then become, for all n ∈ N,∫ ∞

0
du±un

±h±(u±) = q−αn(n−1)/2(l±(p, q))−n([n]!) (37)(
resp.

∫ ∞

0
duunh(u) = q−αn(n−1)/2(l(p, q))−n([n]!)

)
. (38)

Solutions to (37) (resp. to (38)) based on the (p, q)-analogue of the Ramanujan integral [4]
can be written as

h±(
r2
±
) = (p−� − q�)l±(p, q)

qα log(1/(pq)α)
e(pα,qα)

(−r2
±p−α/2q−αl±(p, q)(p−� − q�)

)
(39)(

resp. h(r2) = (p−� − q�)l(p, q)

qα log(1/(pq)α)
e(pα,qα)(−r2p−α/2q−αl(p, q)(p−� − q�))

)
(40)

where we have introduced the reduction of (36), through ρ = 0 and ν = 1/2, as

e(p̄,q̄)(z) =
∞∑

n=0

1

p̄n2/2

zn

[p̄, q̄; p̄, q̄]n
|z| < (p̄)−1/2. (41)

The weight functions W±(r±) (resp. W(r)) can be easily deduced from (39)
(resp. (40))



F824 Fast Track Communication

W±(r±) = 1

π
|N(Z)|−2h±(

r2
±
)

(42)(
resp. W(r) = 1

π
|N(Zquat)|−2h(r2)

)
. (43)

These weight factors differ from the measure weight factors obtained in [4, 5]. Moreover, the
solutions to (37) and (38) may be not unique according to the Carleman criterion [20].
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